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ESTIMATES OF SOME INEQUALITIES FOR CONVEX
FUNCTIONS

MEHMET ZEKI SARIKAYA, MERYEM GUZELYURT

ABSTRACT. In this article, by a different method without using known identi-
ties, some estimates have been obtained for existing inequalities such as mid-
point, trapezoid, Jensen, and Simpson, which are important for convex func-
tions whose modulus of the derivatives are convex. These inequalities cover
the previously puplished results.

1. INTRODUCTION

The usefulness of inequalities involving convex functions is realized from the
very beginning and is now widely acknowledged as one of the prime driving forces
behind the development of several modern branches of mathematics and has been
given considerable attention. Some famous results for such estimations consist of
Hermite-Hadamard, trapezoid, midpoint, Simpson or Jensen inequalities, ect.

Let f : I € R— R be a convex mapping defined on the interval I of real
numbers and a,b € I, with a < b. The following double inequality is well known in
the literature as the Hermite-Hadamard inequality [8]:

The most well-known inequalities related to the integral mean of a convex function
are the Hermite Hadamard inequalities. It gives an estimate from both sides of
the mean value of a convex function and also ensure the integrability of convex
function. It is also a matter of great interest and one has to note that some of
the classical inequalities for means can be obtained from Hadamard’s inequality
under the utility of peculiar convex functions f: These inequalities for convex
functions play a crucial role in analysis and as well as in other areas of pure and
applied mathematics. The absolute value of the difference of the second part of
the inequalities is known as the trapezoidal inequality in the literature and
was given by Dragomir and Agarwal in 1998 [2]. Then, in 2004, the absolute value
of the difference of the first part of the inequalities, known as the midpoint
inequality by Kirmanci, was given [7]. Thus, these two important inequalities have
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attracted the attention of many readers to date, and many studies have been carried
out for different types of convex functions. For recent results and generalizations
concerning Hermite-Hadamard’s inequalities see [B], [6], [9], [10], [12]-[15], [25] and
the references given therein.

In [2], Dragomir and Agarwal proved the following results connected with the

right part of (1.1J).

Lemma 1.1. Let f : I° CR — R be a differentiable mapping on I°, a,b € I° with
a <b. If f' € L[a,b], then the following equality holds:

1
f(a );rf b_a/ fx 0 (1—20)f (ta+ (1 — t)b)dt.  (1.2)

Theorem 1.2. Let f: I° C R — R be a differentiable mapping on I°, a,b € I°
with a < b. If |f'| is convex on [a,b], then the following inequality holds:

fla)+ f(b )
2 b—a/f dx_

(' @+ @n.  (13)

In [7], Kirmaci proved the following results connected with the left part of (1.1)).
In [7] some inequalities of Hermite-Hadamard type for differentiable convex map-
pings were proved using the following lemma.

Lemma 1.3. Let f:I° CR — R, be a differentiable mapping on I°, a,b € I° (I°
is the interior of I) with a <b. If f' € L([a,b]), then we have

bla/abf(ac)dx—f<a;_b> (1.4)

= (b—a) [/ztf’(ta+(1—t)b)dt+/1 (t—1) f'(ta+ (1 —t)b)dt| .

1
0 3

Theorem 1.4. Let f : I° C R — R be a differentiable mapping on I°, a,b € I°
with a < b. If |f’| is convex on [a,b], then we have

o [ s (450)| < 052

< 5 (F @I+ 170 (1.5)

In [1I], Dragomir et. al. proved the following some recent developments on Simp-

son’s inequality for which the remainder is expressed in terms of lower derivatives
than the fourth.

Theorem 1.5. Suppose f : [a;b] — R is an absolutely continuous mapping on [a, b]
whose derivative belongs to Ly[a,b]. Then, the following inequality holds,

@ (50) ] - 2

1[2¢+1 41 i 1
6[3((14—1)} (b—a)quHp

1,1 _
where;—&—a_l.
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In [I9], Sarikaya et. al. obtained inequalities for differentiable convex mappings
which are connected with Simpson’s inequality, and they used the following lemma
to prove it.

Lemma 1.6. Let f : I C R — R be an absolutely continuous mapping on I° such
that f' € Ly [a,b], where a,b € I° with a < b, then the following equality holds:

@+ (S5) 410 - 2

b—a [/t 1 1+t 1—t 1 1+t  1—t
= /0[<23>f(2”2>+<32>f(2 +2b)]dt'

The main inequality in [I9], pointed out for s = 1, as follows:

(1.6)

Theorem 1.7. Let f : I C R — R be a differentiable mapping on I° such that
I’ € Ly [a,b], where a,b € I° with a < b. If |f’|* is a convez on [a,b], q > 1, then
the following inequality holds:

é[f( )+4f<"”’)+f }

< 0o (;(;i;) {<3|f’ (b)lq4+|f’ <a>|‘1)3 G CIELT <a>|Q>i}’

1,1 _
where;—&—a—l.

There are many new studies in the literature on the Simpson type inequalities
for different types of convex functions. For the last two decades, extensions, gener-
alizations and refinements have been made for such inequalities, references can be
found on these issues [1], [16]-[24].

Theorem 1.8 (Jensen Inequality). [II] Let f : [a,b] — R be a convex function and
@ 1s a real-valued integrable function on [a,b] with a < b. Then, we have

b
f (bf / @(t)dt> <

Further, some refinements of Jensen’s inequality was proved by Dragomir et. al
in [3], [4].

Motivated by the results mentioned above, the purpose of this paper is obtained
some inequalities such as midpoint, trapezoid, Jensen, and Simpson, which are
important for convex functions in general by a different method without using
known identities, and these inequalities cover the previously puplished results.

2. MIDPOINT INEQUALITIES

In this section, using the properties of the convexity and by Holder inequality,
we give midpoint inequalities. We begin the following theorem:

Theorem 2.1. Let f: I° C R — R be a differentiable mapping on I°, a,b € I°
with a < b and [’ € L[a,b]. Then, we have

o [ (450

(2.1)
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O () + 170D, i || is convez on 0.}
(- a)
2% (p+1)»

. (If’ @r" +317 <b>|q>3

IN

1
q
> if |f'|? is convex on [a,b],

(If’ B +3[f (a)|

1

1y
p T

)

Proof. We can write

i)
- bia[l[f<x>—f(a3b)]dx
_ bla/b j F/(t)dtda

/ / (1) dide + / / ()] dtda.
b—a b—a a+b a+b

By the change of integration order, we get

1 b
bf/ ‘Zc(z)dﬂff,(a;r >

|dxdt+7/ /|f )| dxdt
1 [

= 7= (t—a)|f'(t \dt+—/ b—t)|f'(t)|dt.

c-

(2.2)

IN

Using the convexity of |f/|, we find that

bia/abf(x)dx—f<a;b)
ol () (oo
i fyeol(-s3 ool (3]
2 {za)—a)" f,<a;b)‘+<b;8a> |ff<a)|+(b;;>3f'<b>}
= D gp@+ o)

(b—a)’ 24
and the first inequality is proved.

IN
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To prove the other half of the inequality in (2.1]), using (2.2)) and from Holder
inequality we have

o (5)

() ([

ks (f o) ([ o)
2+(b;p+)1) (/ 0 <>|th> +(/ib|f'<t>"dt)le

2
Using the convexity of |f’|?, we find that

b_la/abf(xmx_f(a;b)
2152(;(2%1); {(bza/aa;b {(ta) '(a;rb> q+ (a—;b t) g (a”q} dt)q
+< [(t a+b> Fo*+0m-1 /<a;b> q} dt)é}

s p+1i[<f'<a+b> *f’<“)q);+( ’(“f’)qﬂf'(b)wﬂ
22+b;il Klf’ |q+3|f’()|)5+(|f’(a)|q+23|f’(b)|q)§1

and the second inequality is proved.

Q=

1

IN

3. TRAPEZOID INEQUALITIES
In this section, we give trapeziod inequalities as follows:

Theorem 3.1. Let f: I° C R — R be a differentiable mapping on I°, a,b € I°
with a < b and f’ € Lla,b]. Then, we have

b b
‘f(a);f()_bia/f(x)dx (3.1)
(b;a) <|f’(a)| ‘2" |f/(b)|> if |f'| is convex on [a,b]
< 1
ng_ﬂl (lf A ) if1fN" is conves o [a, b, S+ 3 =1, ¢> 1.
p+1)r
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Proof. We can write

fla+fe 1 f°
5 _b—a/a f(x)dx

bia/ab [f(a);f(b)

_ 1 b f(a) - f(x) 1 Lr®) - f)
B bfa/a 2 dx+bfa/a 2 de

_ b_la/ab/jflét)dtdx—b_la/ab/:ﬁ;t)dtdx

By the change of integration order, we get

fla+fe) 1
5 _b—a/a f(x)dx

- f(m)] dw

(3.2)

= /ab/tbf/(t)d:cdt—/ab/atf/(t)dxdt
U?ia) /ab a;bt‘ |f'(t)] dt.

Using the convexity of |f’|, we find that
fl@+fm) 1 /”
‘ 5 b—a . f(z)dz

1 = la+b y y
[T (520 - alro+ e-olf @il

<
T (-a)
1 ’ a+b ) /
+(ba)2/+ <f > >[(ta)|f(b)l+(bt)|f (a)|) dt
(b—a)

= g (@I +17®)

and the first inequality is proved.

To prove the other half of the inequality in (3.1]), using (3.2)) and from Hoélder
inequality we have

fl@+f@) 1
| 2 7b—a/a

= ( / If’(t)th>

b
f(z)dx

IN
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p+1 (/ 10 qctt)

Using the convexity of |f’|?, we find that

fla+fe) 1
5 _b—a/a f(x)dx

—q)r b
o ((bfa) [ le=a1re0r +o-o1s @] dt)

(If’ (a)" : ! W>;

Q=

IN

and the second inequality is proved. which this completes the proof of the (3.1). O

4. SIMPSON INEQUALITIES
In this section, we give Simpson inequalities for convex functions as follows:

Theorem 4.1. Let f : I° C R — R be a differentiable mapping on I°, a,b € I°
with a < b and f' € Lla,b]. Then, we have

1[f(a)+ f(b) atb
3 {2 2f< ﬂ - (4.1)
C=9) (p@l+ 170N, 7 || is conves on [a, ]
(b—a) (If’(b>|q+3f’(a)q)3
s 22+% (p—|—1)% 2
. if |f/|‘1 18 convexr on [a,b], %—&—%: 1, ¢g>1.
1 @]+ 31 B\
(rersirony,

Proof. We can write

L2320 ()]
- bia/b {f(a);rf(b)Jrgf(a;rb)_f(x)] "
_ bia/ f(a dm+b1a/(lbf(b)gf(x)dx+3(b2a)/ab<f(a—2i—b)_f<x))dx
o e e [ [ o

a+b

a+b
bfa/ / t)dtdz + bfa/ / t)dtdz| .
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By the change of integration order, we get

Hmwww(a”)}l/bf
H- //f Ddadt - //f t)ddt
/ F'(t)dtdz + _a) /aj /b f'(t)dtdz

4u ) dt

(4.2)

+

56—a .
/
T /' (0] dt + bQQ)/ibw—tHf@Nw
3@1a>a(2b )10
[ (2o
)

5 b
+§@jﬂjl O T AR LI I

Using the convexity of | f/|, we find that

[0 (532) - 2 [

< ol (3 ) el ()] (5 @] a
i o () (-5 o e-olr (552)
+M£%PL%%FWWU (5] (55201 @ a

IN

IN

T gbw of(r- 55 e o-olr (450)]|
- 3@{a>{2wéaf:f(a§b>|%“ 4)nf<n+|f<n@
+3®{a){2wﬂéﬁ (%5°) @af[UW®|+f%w]}
¢ Lo [OLL@N] ., Oy
0—a) ,
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and the first inequality is proved.
To prove the other half of the inequality in (4.1]), using (4.2)) and from Holder
inequality we have

Hf(awf(b)”f(wbﬂ

= ﬂ = ot ; b ‘
2 (pt 1) [(/a |£(®)] dt) +</az+b|f(t) dt) ]

Using the convexity of |f’|?, we find that

{f( W+ () 2f<a+b>}

1
3

1

< 21+ ;{( a+b> (a—;b_t) |f’(a)|q}dt>q
+<b—a K Hb) Fo+0-t) (a;b)Tdt)i}

: 2+(b<;+)1>[< ()] ”'(a)q);*< ’(a‘;b)qﬂf'(b)iq)é]

= 22+<b(;f1) [(m ()| +23|f’ <a>|q>3 . (If’ <a>|q+2 31f <b>|q)3]

and the second inequality is proved. which this completes the proof of the (4.1)). O

5. JENSEN INEQUALITIES

Theorem 5.1. Let f : [a,b] — R be a convex function and ¢ is a real-valued
integrable function on [a,b] with a <b. If f' and ¢' are bounded functions on [a,b],
then the following inequality holds:

b b
f(bia/w)dx) 7= | e < W W ). 1)

a
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Proof. Let’s choose as u = ﬁ © (x) dz. Using the properties bounded of f' and

S —

¢, we find that

| | =
&
B
\
—
AS)

IA
=
g
Q\@
B
!
©
&
=
8

|llf—”a /// z)dz| dsdz
. ||f|| ||sou //‘ aldsde,

By calculated the last above integral, we get

b T b
! /
o Wlsliele [ [(6mais|
(b—a)
T
¥ 2 2
= /=T = r—a) 4+ (b—2)|dr
Syl AR USON
I /
Wl
which this completes the proof of the (5.1)). O

Theorem 5.2. Let f : [a,b] — R be a convex function and ¢ is a real-valued
integrable function on [a,b] with a < b. If f' is bounded function on [a,b], and |¢'|
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is convex function on [a,b], then the following inequality holds:

f(bla/bso(fv)dx)—

Proof. Let’s choose as u = ﬁ

find that

< W [ 2 O] .

(5.2)

8 — o

¢ (x) dz. Using the properties bounded of f’, we

[ | =
&
B

Kh

3

b u
1 !
_ (b_a)a/(/)f(t)dtdas
T
< o [lu-e@la

dzx

= /\//
e ] [ | ficorua] o

By the change of integration order, we get

f(bia/bm)dx) —(b_la)/bfw@»dx
, b x ' b
(bf_”;;a/ {/u—a) |go’<z>|dz+z/<b—z>so’(z)mz] o
17 | [ 7 [
- [ /(z |dzdm+// (b—2)|¢ ( )|dzdx]

IN

IN
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b
- fb”fa;/<b—z><z—a>|¢<z>|dz.

a

Using the convexity of |¢’|, we find that

b b
1 1
f b_aa/w(x)dx —(b_a)a/f(@(x))d%“
b
215N f i 1 s ) 0 o)1 a1 (o ) I (B
< Wa/w ) (2= a) (b - 2) ¢! (@] + (= — a) |¢' ()]}

1 oo Tle" (@)] + |’ (b)]
3 V 2 - ](b_“)

which this completes the proof of the (5.2]). O
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